Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Böhme, Rainer; Kiffer, Lucianna (Ed.)We propose Cornucopia, a protocol framework for distributed randomness beacons combining accumulators and verifiable delay functions. Cornucopia generalizes the Unicorn protocol, using an accumulator to enable efficient verification by each participant that their contribution has been included. The output is unpredictable as long as at least one participant is honest, yielding a scalable distributed randomness beacon with strong security properties. Proving this approach secure requires developing a novel property of accumulators, insertion security, which we show is both necessary and sufficient for Cornucopia-style protocols. We show that not all accumulators are insertion-secure, then prove that common constructions (Merkle trees, RSA accumulators, and bilinear accumulators) are either naturally insertion-secure or can be made so with trivial modifications.more » « less
-
Böhme, Rainer; Kiffer, Lucianna (Ed.)We consider the problem of secret leader election with accountability. Secret leader election protocols counter adaptive adversaries by keeping the identities of elected leaders secret until they choose to reveal themselves, but in existing protocols this means it is impossible to determine who was elected leader if they fail to act. This opens the door to undetectable withholding attacks, where leaders fail to act in order to slow the protocol or bias future elections in their favor. We formally define accountability (in weak and strong variants) for secret leader election protocols. We present three paradigms for adding accountability, using delay-based cryptography, enforced key revelation, or threshold committees, all of which ensure that after some time delay the result of the election becomes public. The paradigm can be chosen to balance trust assumptions, protocol efficiency, and the length of the delay before leaders are revealed. Along the way, we introduce several new cryptographic tools including re-randomizable timed commitments and timed VRFs.more » « less
-
-
Baldimtsi, Foteini; Cachin, Christian (Ed.)We introduce Bicorn, an optimistically efficient distributed randomness protocol with strong robustness under a dishonest majority. Bicorn is a "commit-reveal-recover" protocol. Each participant commits to a random value, which are combined to produce a random output. If any participants fail to open their commitment, recovery is possible via a single time-lock puzzle which can be solved by any party. In the optimistic case, Bicorn is a simple and efficient two-round protocol with no time-lock puzzle. In either case, Bicorn supports open, flexible participation, requires only a public bulletin board and no group-specific setup or PKI, and is guaranteed to produce random output assuming any single participant is honest. All communication and computation costs are (at most) linear in the number of participants with low concrete overhead.more » « less
-
Robotic grasping can enable mobile vehicles to physically interact with the environment for delivery, repositioning, or landing. However, the requirements for grippers on mobile vehicles differ substantially from those used for conventional manipulation. Specifically, grippers for dynamic mobile robots should be capable of rapid activation, high force density, low power consumption, and minimal computation. In this work, we present a biologically-inspired robotic gripper designed specifically for mobile platforms. This design exploits a bistable shell to achieve “reflexive” activation based on contact with the environment. The mechanism can close its grasp within 0. 12s without any sensing or control. Electrical input power is not required for grasping or holding load. The reflexive gripper utilizes a novel pneumatic design to open its grasp with low power, and the gripper can carry slung loads up to 28 times its weight. This new mechanism, including the kinematics, static behavior, control structure, and fabrication, is described in detail. A proof of concept prototype is designed, built, and tested. Experimental results are used to characterize performance and demonstrate the potential of these methods.more » « less
An official website of the United States government

Full Text Available